AD=-Al102 168 STANFORD UNIV CA DEPT OF STATISTICS F/6 12/%

LONG UNIMODAL sueseousucss. & PROBLEM OF FuR.Ke CHUNG. (U}

APR 81 J M STEEL NOOOI“-TS-C-O"75
UNCLASSIFIED TR=301

END
" X
DYIC -

N







! é;// LONG UNIMODAL SUBSEQUENCES A PROBLEM OF F R.K. CHUNG /

\

- vee - 'B:y- T e T A S
;7694: J M1chae1/Stee1e
Aoaeauion For
NTIS GRM:I
e DTIC TAB
;o Unannounceq
v/ /} IECHNICAL REPNTﬁ“O 301 Justification U
e !Illl!!ﬁ 1 IS
1L A }P ) 8 - By
- | Distributiony
/= Y / Availability Coqes |
i Avail and/op
o Dist Special
KA - SR
___Prepared Under Contract I

7 NPPOTA-T6-C-pATS  (NR-042-267)
" For the Office of Naval Research

Herbert Solomon, Project Director

Reproduction in Whole or in Part is Permitted
for any Purpose of the United States Government

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

e
- \ # i




T

.

.« oW,y
O VU

B

LONG UNIMODAL SUBSEQUENCES:
A PROBLEM OF F.R.K. CHUNG
By

J. Michael Steele

I. Introduction.

Let p denote a permutation of 1{1,2,...,n} and call

{a1 <a, <. < at] a unimodal subsequence provided there is a

j such that

P(al) < P(az)< eeeX p(aj) > p(aj+1) > ees 2 p(at)

or

p(al) > p(a2)> ees” p(aj) < p(aj+1) < oee < p(at) .

Let 2(n) denote the expected length of the longest unimodal subse~

quence of a randomly permuted subsequence i.e. £(n) = I p(p)/n!, where
P

p(p) denotes the length of the longest unimodal subsequence of the

permutation p.

F.R.K. Chung [1] conjectured that

lim g2(n)//m = C exists .
n-x

The point of this note is to prove Chung's conjecture and show C = 2 Y2,
Actually, Chung's conjecture is slightly more general than this introduc-

tory version, and this more general conjecture is obtained by the same

proof.




II., Proof of F.R.K, Chung's Conjecture.
Suppose (xi,Yi), 1 £i <> are independent and uniformly
. . R 2
distributed in [0,1] « For any A C [0,1] let
I () = max{k: ¥, <y  <.,..< Y, with

X, <X, <.,..°<Xx,, xi €A and

ij € [1,...,n]}

and
Dn(A) = max{k: Yy >Y, 2 ... 2 Yi with
1 ) k
xi < xi < ...< xi » xi € A and
1 2 k j
i€ (1,2,...,u]}
Next set

u = . <nix< . {n\ax(In([O,t])+ Dn([t»l.]), Dn(fo’tJ) + In([t'll)’} .

The desired proof will be obtained by applying known results to the random

variable Un' To begin it is easy to check that

EUn = 2(n) .

e "m{m?m
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Next we note that by the work of Hammersley [2] and Kesten ([3) that

almost surely and in 1l we have the limits

(2.2) lim xn(A)//rT=c,/X(A) and  lim on(A)/ﬁ=c (A)

n -+ n —+®

where A(A) is the Lebesgue measure of A c [0,1], and C is a
universal constant, The work of Logan and Shepp [9] and Vershik and
Kerov [5] established that C = 2,

For any N and 1 < k < N we define

N
Un(k) = max[In(O,k/n) + Dn((k-l)/N,l), Dn(o,k/N) + In((k-l))/N,l)]

and
U: = max UN(k) .
1N
Clearly, for all N, Un < U: and by the above mentioned limit results
we have

lim UV//n = 2 max (/N + JNKID/N) ,
nro 1 1§k_<_N

where the limit is almost sure and in Ll. The arbitrariness of N then
shows lim sup Un//'n-i 2 max (/& + i-t) = 2/2 a.S., so by Fatou's
n-o 0<t<1

lemma we get 1lim sup l(n)/v".n:i 2v/2,
n-*e

For the opposite direction note the trivial bound

1 1
v, 2 In([0,§]) + Dn([i’ll)
so

Lim inf &(n)/¥n > lim inf (1 (0,51 + D_(3,1]) = 2/2

n-ro n-o

which completes the proof.




e

III. The Generalization,

Instead of allowing the subsequence to make "one turn” as in
the unimodal case, one can consider subsequences which make k
turns. Explicitly, let lk(n) be the expected length of the longest
subsequence S of a random permutation with the following property: i
S can be decomposed into k+1 segments which are monotone and
which alternate between increasing and decreasing.

The method of the preceeding section can be used easily to show

lim zk(n)/,/rT = 2 /k+1 ;

n -~

all one has to do is define the proper analogue Un(k) of Un and argue
as before. One should also note that the preceding bounds also prove the

almost sure and Ll convergence of Un(k)/J; to 2/k+ .
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